\bigoplus

Index

absolute pressure 166 absolute velocity 61 acceleration 42 angular 123 constant 43-46 due to gravity 44-46 from velocity-time graph 42, 47-49 uniform circular motion 55-56 accepted values 9 accuracy 13, 14 air resistance 44-45, 115, 177 aircraft airspeed measurement 180 lift forces 175, 180 turbulence 176 altitude 169 analysis 4, 20 angles, measuring 55 angular acceleration 123 angular impulse 136-137 angular momentum 76, 135 law of conservation of 138-139 angular velocity 55-56, 119 Archimedes's principle 169-170 atmospheric pressure 166 average acceleration 42 average velocity 41-42 axis of rotation 119 parallel axis theorem 133-134 rotational inertia and 125, 133-134

banked roads 93–94
Bernoulli's principle 175, 179–180
black bodies 196–197
boiling 188, 189, 190–191
brittle materials 162
bulk modulus 164
buoyant forces 169–170

calculated values 7–8, 15–16
calorimetry 187
capillary action 173–174
carburettors 180
cars
safety features 80
streamlining 177

uniform circular motion 92, 93–94 centre of mass 86–88 equilibrium and 152

of particle systems 140-141 of rigid bodies 140-142 centripetal force 57-58, 95 changes of state 187, 188 co-ordinate grids 40, 41 coefficient of viscosity 181 collinear vectors 24, 28-30 collisions 82-84, 113 commutative law 28 component vectors 26, 31, 41 compressibility, effect on fluid flow 176 compressional deformation 159 conclusions 4, 20 concurrent forces 144-145 conduction 192, 193 conservation of angular momentum,

law of 138–139 conservation of energy, law of 111– 113, 115

conservation of linear momentum, law of 76–77, 79 in collisions 82–84, 113 variable mass systems 90–91

conservative forces 114, 115 contact angle 172 convection 194, 197 conversion factors 15 cooling, Newton's law of 197

coplanar forces 146, 151–153 coplanar vectors 25, 28–30 couples 155–156

critical point 187 crumple zones 80

deformation 159-161

elastic limit 161 modulus of elasticity 162–164

of the atmosphere 169

effect on fluid flow 176 pressure and 166 displacement, from velocity-time graph 47–49

displacement-time graphs 41, 44, 46–47

dissipative forces 114, 115 dot product *see* scalar product ductile materials 162 dynamic equilibrium 151 dynamic pressure 179, 180 dynamics, basic laws of 69-73

elastic behaviour 159–165 elastic collisions 82, 113 elastic deformation 159, 161 elastic limit 159–160, 161 elastic potential energy 107 energy 103

conservation of 111–113, 115
heat see heat energy
kinetic see kinetic energy
mechanical 111, 114–115
in oscillations 112
potential 103–104, 107–109
stored in a spring 108–109
strain energy 164–165
surface energy 171
equation of continuity 177–178
equations of motion

linear motion 39, 129
rotational motion 129, 131

equilibrium concurrent forces 144–145

conditions 151 coplanar forces 151–153 floating objects 169 limiting 72 of a particle 144–145 rotational 154

errors 9–12
parallax errors 10–11
random errors 9–10, 15
systematic errors 11–12
zero errors 12
evaporation 189, 192, 197
experiments 1, 3–4
writing up 17–18
explosions 91

falling bodies 44–46 floating objects 169–170 flow rate 176, 177–178 fluids

Bernoulli's principle 175, 179–180 bodies moving in 181–182 equation of continuity 177–178 flow rate 176, 177–178 laminar flow 175, 182 measuring flow speed 180

turbulent flow 175-176, 182	impulse 78-80, 136	moment of inertia see rotational
viscosity of 180–181	inelastic collisions 82, 113	inertia
see also liquids	instantaneous acceleration 42	mousetrap car 106
force-displacement graphs 102–103	instantaneous velocity 41	multiple values 7, 15
force-extension graphs 108–109, 161,	instruments	•
162	parallax errors 10–11	neutral buoyancy 170
forces 67	precision 5, 6, 15	neutral equilibrium 152
addition 31	zero errors 12	Newton's cradle 79
centripetal 57–58, 95	insulation 192, 193, 197	Newton's law of cooling 197
change of momentum and 80		Newton's law of universal gravitation
concurrent 144–145	Kepler's laws 95	60, 73
conservative 114, 115	kinetic energy 104	Newton's laws of motion
coplanar 146, 151–153	in collisions 83, 113	demonstrating 70
in deformation 159–160	during changes of state 187	first law 57, 69, 144
dissipative 114, 115	rotational 126–127	linear momentum 76
effect on springs 108-109	transfers to potential energy	second law 70, 71, 76, 90,
equilibrium and 144–145	111–112	104–105
moments of 85-86, 146-149	work and 104-105	third law 70, 76, 90
resolving 67–68	kinetic friction 71, 72-73, 104	
in uniform circular motion 57–59,		orders of magnitude 16
92–95, 119	laminar flow 175, 182	
viscous drag 180–182	latent heat 188	parallax errors 10-11
work done and 99-103	limit of proportionality 161	parallel axis theorem 133-134
frames of reference 40-41, 130	limiting equilibrium 72	parallelogram rule 29
framework for reports 18-20	limiting friction 72	Pascal's law 167
free body diagrams 44-45	linear momentum 76, 135	peer review 2
friction 71-73, 104	law of conservation of 76–77, 79,	pendulums 58, 112
in circular motion 57, 92–94	82-84, 90-91, 113	percentage uncertainties 7–8
as dissipative force 115	rate of change of 80	phase change diagrams 187
fusion see melting	variable mass systems 90–91	phase changes 187, 188
	liquids	phases 187
Galileo Galilei 46, 73	capillary action 173–174	planetary motion, Kepler's laws of 95
gases, collisions in 82	contact angles 172	plastic deformation 159, 161
glancing collisions 83	pressure difference across surface	pneumatics 168
global warming 197	171	position vectors 24
gravitational potential energy 107,	surface energy 171	potential energy 103–104, 107–109
108, 114, 115	surface tension 170–173	transfers to kinetic energy 111–112
gravity 60, 73	transmission of pressure in 167-	power 116, 132
acceleration due to 44-46	168	precision 13, 14
as conservative force 115	viscosity 180–181	of instruments 5, 6, 15
motion in a vertical circle 57-59	see also fluids	uncertainty and 6, 13
work done against 99–100, 106,		predictions 3
107–108	measurements 4–7	pressure
greenhouse effect 197	accuracy 13, 14	due to a fluid column 166–167
gyroscopes 135, 136	errors in 9–12	dynamic 179, 180
head-on collisions 83	multiple values 7, 15	static 179, 180
	precision 5, 6, 13, 14	transmission in liquid 167–168
heat energy 191–192	significance 13-14 significant figures 4-5, 13	projectile motion 52–54
changes of state and 188 radiation of 196–197	uncertainties 6–7	Pythagoras's theorem 27, 30
rate of loss 197	units 4, 15	racetracks 93–94
thermal conductivity 194–195		radial force 57, 95, 119
transfer of 192–194	mechanical energy 111, 114–115 melting 188, 189–190	radians 55, 119
Hooke's law 161	meniscus 173	radiation 196–197
hydraulic brakes 167	mistakes 9	random errors 9–10, 15
hypothesis 2, 3, 4	moment of a force 85–86, 146–149	recoil-less rifles 79
, -, -, -, -, -, -, -, -, -, -, -, -, -,	see also torque	relative velocity 61
	· · · · · · · · · · · · · · · ·	

Grade 11 20

Z01_PHYS_SB_ETHG11_0209_IND.indd 201

report writing 17–20
research 3
results, recording 17–18
Reynolds number 182
right-hand rule 35, 121
rockets 90
rotation about a fixed axis 119
rotational equilibrium 154
rotational inertia 124–126
parallel axis theorem 133–134
rotational kinetic energy 126–127
rotational motion
equations 129, 131
frame of reference 130
rotational stability 169

sailing craft 180 satellites, motion of 60 scalar product 33-34 scalar projection 34-35 scalar quantities 23, 33 scale diagrams 28 scientific method 1, 2-4 seat belts 80 shear deformation 159 shear modulus 164 significance 13-14 significant figures 4-5, 13 specific heat capacity 184-187 specific latent heat of fusion 189-190 of vaporisation 190-191 speed 41 springs conservative forces 115 energy stored in 108-109 stability 87-88, 140 floating objects 169 rotational 169 stable equilibrium 152 static equilibrium 151 static friction 71-72, 104 static pressure 179, 180

Stefan-Boltzman law 196-197 Stokes's law 181-182 strain energy 164-165 streamline flow 175, 182 streamlining 177 submarines 169-170 surface energy 171 surface tension 170-173 systematic errors 11-12

tangential force 95 temperature 191–192 changes of state and 187 cooling and 197 effect on fluid flow 176 tensile deformation 159, 160 tensile strain 161 tensile stress 160 terminal velocity 46, 182 thermal conductivity 194–195 thermal energy see heat energy thermal expansion 194 torque 85-86, 120-123, 136, 146, 147 of a couple 155-156 in rotational equilibrium 154 work done by 122, 132 torsional deformation 159 triangle rule 29-30 triple point 187 true values 9, 13 turbulent flow 175-176, 182

uncertainties 6-7, 13
calculating 7-8
from instruments 15
percentage uncertainties 7-8
uniform circular motion 55-57
forces acting 57-59, 92-95, 119
in a horizontal circle 57, 92-94
in a vertical circle 57-59, 95
unit vectors 24, 35, 121
units 4, 15
unstable equilibrium 152

vaporisation see boiling; evaporation vector product 35-36, 121 vectors 23 addition and subtraction 28-31 applications 36 multiplication 33-36 representing 23 resolving 26 scalar product 33-34 scalar projection 34-35 types 24-25 vector product 35-36, 121 velocity 41-42 absolute 61 angular 55-56, 119 constant acceleration and 43-46 from displacement-time graph 41, 44, 46-47 motion in a vertical circle 57-59 relative 61 terminal 46, 182 velocity-time graphs 42, 47-49 viscosity 180-181 viscous drag force 180-182

work 99, 101
against gravity 99–100, 106,
107–108
done by constant forces 99–102,
103
done by a torque 122, 132
done by variable forces 102–103
extension of a spring 108
kinetic energy and 104–105
work-energy theorem 104–106

weightlessness 74

yield point 161 Young modulus 162–163 Young–Laplace equation 171

zero errors 12

Z01_PHYS_SB_ETHG11_0209_IND.indd 203 7/10/10 9:33:46 am

